Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.192
Filtrar
1.
Sci Rep ; 14(1): 7316, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538670

RESUMO

The uterus exhibits intermittent electrophysiological activity in vivo. Although most active during labor, the non-pregnant uterus can exhibit activity of comparable magnitude to the early stages of labor. In this study, two types of flexible electrodes were utilized to measure the electrical activity of uterine smooth muscle in vivo in anesthetized, non-pregnant rats. Flexible printed circuit electrodes were placed on the serosal surface of the uterine horn of six anesthetized rats. Electrical activity was recorded for a duration of 20-30 min. Activity contained two components: high frequency activity (bursts) and an underlying low frequency 'slow wave' which occurred concurrently. These components had dominant frequencies of 6.82 ± 0.63 Hz for the burst frequency and 0.032 ± 0.0055 Hz for the slow wave frequency. There was a mean burst occurrence rate of 0.76 ± 0.23 bursts per minute and mean burst duration of 20.1 ± 6.5 s. The use of multiple high-resolution electrodes enabled 2D mapping of the initiation and propagation of activity along the uterine horn. This in vivo approach has the potential to provide the organ level detail to help interpret non-invasive body surface recordings.


Assuntos
Trabalho de Parto , Miométrio , Feminino , Gravidez , Ratos , Animais , Miométrio/fisiologia , Eletromiografia , Útero/fisiologia , Trabalho de Parto/fisiologia , Eletrodos , Contração Uterina/fisiologia
2.
Physiol Genomics ; 56(1): 32-47, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955337

RESUMO

The microenvironment and cell populations within the myometrium play crucial roles in maintaining uterine structural integrity and protecting the fetus during pregnancy. However, the specific changes occurring at the single-cell level in the human myometrium between nonpregnant (NP) and term pregnant (TP) states remain unexplored. In this study, we used single-cell RNA sequencing (scRNA-Seq) and spatial transcriptomics (ST) to construct a transcriptomic atlas of individual cells in the myometrium of NP and TP women. Integrated analysis of scRNA-Seq and ST data revealed spatially distinct transcriptional characteristics and examined cell-to-cell communication patterns based on ligand-receptor interactions. We identified and categorized 87,845 high-quality individual cells into 12 populations from scRNA-Seq data of 12 human myometrium tissues. Our findings demonstrated alterations in the proportions of five subpopulations of smooth muscle cells in TP. Moreover, an increase in monocytic cells, particularly M2 macrophages, was observed in TP myometrium samples, suggesting their involvement in the anti-inflammatory response. This study provides unprecedented single-cell resolution of the NP and TP myometrium, offering new insights into myometrial remodeling during pregnancy.NEW & NOTEWORTHY Using single-cell RNA sequencing and spatial transcriptomics, the myometrium was examined at the single-cell level during pregnancy. We identified spatially distinct cell populations and observed alterations in smooth muscle cells and increased M2 macrophages in term pregnant women. These findings offer unprecedented insights into myometrial remodeling and the anti-inflammatory response during pregnancy. The study advances our understanding of pregnancy-related myometrial changes.


Assuntos
Miométrio , Útero , Gravidez , Feminino , Humanos , Miométrio/fisiologia , Miócitos de Músculo Liso , Anti-Inflamatórios
3.
Am J Obstet Gynecol ; 228(5S): S1192-S1208, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164493

RESUMO

Organ-level models are used to describe how cellular and tissue-level contractions coalesce into clinically observable uterine contractions. More importantly, these models provide a framework for evaluating the many different contraction patterns observed in laboring patients, ideally offering insight into the pitfalls of currently available recording modalities and suggesting new directions for improving recording and interpretation of uterine contractions. Early models proposed wave-like propagation of bioelectrical activity as the sole mechanism for recruiting the myometrium to participate in the contraction and increase contraction strength. However, as these models were tested, the results consistently revealed that sequentially propagating waves do not travel long distances and do not encompass the gravid uterus. To resolve this discrepancy, a model using 2 mechanisms, or a "dual model," for organ-level signaling has been proposed. In the dual model, the myometrium is recruited by action potentials that propagate wave-like as far as 10 cm. At longer distances, the myometrium is recruited by a mechanotransduction mechanism that is triggered by rising intrauterine pressure. In this review, we present the influential models of uterine function, highlighting their main features and inconsistencies, and detail the role of intrauterine pressure in signaling and cervical dilation. Clinical correlations demonstrate the application of organ-level models. The potential to improve the recording and clinical interpretation of uterine contractions when evaluating labor is discussed, with emphasis on uterine electromyography. Finally, 7 questions are posed to help guide future investigations on organ-level signaling mechanisms.


Assuntos
Trabalho de Parto , Contração Uterina , Gravidez , Feminino , Humanos , Contração Uterina/fisiologia , Mecanotransdução Celular , Trabalho de Parto/fisiologia , Miométrio/fisiologia , Útero/fisiologia
4.
Reproduction ; 166(1): 55-64, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184053

RESUMO

In brief: During pregnancy, uterine kept quiescence along with uterine overdistention before labor. Prolonged stretching induced uterus myometrial hypoxia, increased TREK1 expression, and relaxed the myometrium, which may contribute to uterine quiescence and atony during pregnancy. Abstract: The mechanisms underlying pre-labor uterine quiescence and uterine atony during overdistention are unclear. TREK1 (a two-pore domain potassium channel) and hypoxia-inducible factor-1α (HIF-1α) are activated by mechanical stretch, and their expression is upregulated by decreased uterine contractility. HIF-1α is a nuclear factor which regulates numerous target proteins, but whether it regulates TREK1 during the uterine stretch to cause uterine quiescence and/or atony is unclear. We investigated uterine contractility at different gestational stages in rats, as well as in non-pregnant uteri, which were induced by prolonged stretching and hypoxia. We also assessed the effects of incubating the uteri with or without echinomycin or l-methionine. Moreover, we analyzed HIF-1α and TREK1 expression levels in each group, as well as at various gestational stages of pregnant human uteri. We found that contractility was significantly decreased in pregnant uteri when compared with non-pregnant uteri, and this decrease was associated with increases in HIF-1α and TREK1 expression levels. HIF-1α and TREK1 expression levels in human uteri increased with the gestational length. Decreased uterine contractility and increased HIF-1α and TREK1 expression levels were also observed in non-pregnant rat uteri under 8 g of stretching tension or hypoxia. Inhibition of hypoxia with echinomycin restored normal uterine contractility, while HIF-1α and TREK1 protein expression remained reduced. TREK1 inhibition with l-methionine also restored uterine contractility under tension or hypoxia. In conclusion, we demonstrated that prolonged stretching induces myometrial hypoxia, increases TREK1 expression, and relaxes the myometrium, which may contribute to uterine quiescence and atony.


Assuntos
Equinomicina , Trabalho de Parto , Canais de Potássio de Domínios Poros em Tandem , Animais , Feminino , Humanos , Gravidez , Ratos , Equinomicina/farmacologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Trabalho de Parto/fisiologia , Miométrio/fisiologia , Útero , Canais de Potássio de Domínios Poros em Tandem/fisiologia
5.
Nature ; 616(7955): 143-151, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991123

RESUMO

The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.


Assuntos
Multiômica , Primeiro Trimestre da Gravidez , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular , Placenta/irrigação sanguínea , Placenta/citologia , Placenta/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Relações Materno-Fetais/fisiologia , Análise de Célula Única , Miométrio/citologia , Miométrio/fisiologia , Diferenciação Celular , Organoides/citologia , Organoides/fisiologia , Células-Tronco/citologia , Transcriptoma , Fatores de Transcrição/metabolismo , Comunicação Celular
7.
J Physiol ; 601(9): 1675-1690, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35941750

RESUMO

Approximately 10% of US births deliver preterm before 37 weeks of completed gestation. Premature infants are at risk for life-long debilitating morbidities and death, and spontaneous preterm labour explains 50% of preterm births. In all cases existing treatments are ineffective, and none are FDA approved. The mechanisms that initiate preterm labour are not well understood but may result from dysfunctional regulation of quiescence mechanisms. Human pregnancy is accompanied by large increases in blood flow, and the uterus must enlarge by orders of magnitude to accommodate the growing fetus. This mechanical strain suggests that stretch-activated channels may constitute a mechanism to explain gestational quiescence. Here we identify for the first time that Piezo1, a mechanosensitive cation channel, is present in the uterine smooth muscle and microvascular endothelium of pregnant myometrium. Piezo is downregulated during preterm labour, and stimulation of myometrial Piezo1 in an organ bath with the agonist Yoda1 relaxes the tissue in a dose-dependent fashion. Further, stimulation of Piezo1 while inhibiting protein kinase A, AKT, or endothelial nitric oxide synthase mutes the negative inotropic effects of Piezo1 activation, intimating that actions on the myocyte and endothelial nitric oxide signalling contribute to Piezo1-mediated contractile dynamics. Taken together, these data highlight the importance of stretch-activated channels in pregnancy maintenance and parturition, and identify Piezo1 as a tocolytic target of interest. KEY POINTS: Spontaneous preterm labour is a serious obstetric dilemma without a known cause or effective treatments. Piezo1 is a stretch-activated channel important to muscle contractile dynamics. Piezo1 is present in the myometrium and is dysregulated in women who experience preterm labour. Activation of Piezo1 by the agonist Yoda1 relaxes the myometrium in a dose-dependent fashion, indicating that Piezo1 modulation may have therapeutic benefits to treat preterm labour.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Gravidez , Recém-Nascido , Humanos , Feminino , Miométrio/fisiologia , Trabalho de Parto Prematuro/metabolismo , Útero , Músculo Liso/metabolismo , Canais Iônicos/metabolismo
8.
Biochem Pharmacol ; 204: 115244, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36087639

RESUMO

Women seeking improved fertility often undergo diagnostic hysteroscopy that could cause uterine thermal injury with unclear impact on uterine contraction, embryo implantation and fertility. We tested whether uterine thermal insult adversely affects myometrium function and contraction related receptors, channels, junctional proteins and remodeling enzymes. Female Sprague-Dawley rats were anesthetized, the left uterine horn was infused with 85 ℃ hot saline (thermal Insult) and the right horn was infused with 25℃ warm saline (control) for 3 min. After 7-days recovery, uterine strips were prepared for tissue histology and measurement of contraction, and mRNA and protein levels of oxytocin receptor, progesterone (P4) receptor A (PR-A), membrane K+ channel TREK-1, junctional protein connexin-43 (CX-43) and matrix metalloproteinases MMP-2 and MMP-9. Uterine tissue histology showed cellular swelling and inflammatory cell infiltration immediately following thermal insult, and recovery with no difference from control 7-days later. KCl (96 mM) and oxytocin (10-13-10-7 M) caused significant contraction that was not different in thermal insult vs control uterine strips. Pretreatment with P4 (10-5 M) for 1 h caused marked inhibition of KCl and oxytocin contraction that was insignificantly greater in thermal vs control uterus. RT-PCR showed decreases in oxytocin receptor, PR-A, TREK-1, CX-43, MMP-2 and MMP-9 mRNA in thermal vs control uterus. Western blots showed decreases in oxytocin receptor, no change in TREK-1 and increased PRA, CX-43, MMP-2, and MMP-9 protein levels in thermal vs control uterus. To assess the impact on fertility, female rats were housed with male rats, and on gestational day 19, the litter size, pup weight and crown-rump length, and placenta weight were not different in thermal vs control uterus. Thus, after thermal insult-induced immediate inflammation and reduced heat-sensitive mRNA expression, the uterus undergoes a recovery and adaptation process involving preserved oxytocin-induced contraction, P4 inhibition and TREK-1 channels. The uterus self-healing process appears to require improved PR-A signaling, intercellular communication via CX-43 and tissue remodeling by MMP-2 and MMP-9. The uterine thermal recovery processes could be essential for maintaining fertility and future pregnancy outcome.


Assuntos
Progesterona , Contração Uterina , Animais , Conexinas/metabolismo , Feminino , Fertilidade , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Miométrio/fisiologia , Ocitocina/metabolismo , Ocitocina/farmacologia , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Receptores de Progesterona/metabolismo , Útero/metabolismo
9.
BMC Pregnancy Childbirth ; 22(1): 187, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260110

RESUMO

BACKGROUND: To examine the correlation between the occurrence of adenomyosis and the outcome of vaginal repair of cesarean section scar defects (CSDs). METHODS: A total of 278 women with CSD were enrolled in this retrospective observational cohort study at the Shanghai First Maternity & Infant Hospital between January 2013 and August 2017. Patients were divided into two groups according to preoperative magnetic resonance imaging (MRI) findings: the adenomyosis group and the non-adenomyosis group. They all underwent vaginal excision and suturing of CSDs and were required to undergo examinations 3 and 6 months after surgery. Preoperative and postoperative clinical information was collected. Optimal healing was defined as a duration of menstruation of no more than 7 days and a thickness of the residual myometrium (TRM) of no less than 5.8 mm after vaginal repair. RESULTS: Before vaginal repair, for patients in the adenomyosis group, the mean duration of menstruation was longer and TRM was significantly thinner than those in patients in the non-adenomyosis group (p < 0.05). The TRM and duration of menstruation 3 and 6 months after surgery were significantly improved in both groups (p < 0.05). There were more patients with optimal healing in the non-adenomyosis group than in the adenomyosis group (44.7% vs. 30.0%; p < 0.05). Furthermore, 59.3% (32/54) of the women tried to conceive after vaginal repair. The pregnancy rates of women with and without adenomyosis were 66.7% (8/12) and 61.9% (26/42), respectively. The duration of menstruation decreased significantly from 13.4 ± 3.3 days before vaginal repair to 7.6 ± 2.3 days after vaginal repair in 25 patients (p < 0.001). The TRM increased significantly from 2.3 ± 0.8 mm before vaginal repair to 7.6 ± 2.9 mm after vaginal repair (p < 0.001). CONCLUSIONS: Vaginal repair reduced postmenstrual spotting and may have improved fertility in patients with CSDs. Patients with adenomyosis are more likely to have suboptimal menstruation and suboptimal healing of CSDs. Adenomyosis might be an adverse factor in the repair of uterine incisions.


Assuntos
Adenomiose/complicações , Cesárea/efeitos adversos , Cicatriz/cirurgia , Procedimentos Cirúrgicos em Ginecologia/métodos , Vagina/cirurgia , Adenomiose/diagnóstico por imagem , Adulto , China/epidemiologia , Cicatriz/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Menstruação/fisiologia , Miométrio/fisiologia , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Resultado do Tratamento
10.
Neuroendocrinology ; 112(11): 1078-1086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168243

RESUMO

BACKGROUND/AIMS: The aim of this study was to determine whether spontaneous and stimulated contractile activity of myometrium in epileptic rats is different from healthy ones, and whether antiepileptic drugs (AEDs) have any direct influence on myometrial contractility. METHODS: Myometrial strips from nonpregnant and pregnant adult epileptic WAG/Rij and Wistar rats were suspended in organ bath containing physiological salt solution (37°C and pH 7.4, aerated with 95% oxygen-5% CO2), and isometric contractions were recorded. Effects of cumulative concentrations of selected AEDs including phenytoin, levetiracetam, and valproic acid alone and in combination on oxytocin-induced contractions was examined. Contractile parameters assessed included the area under curve, amplitude, and frequency of contractions, evaluated by 10-min periods. Data were analyzed using one-way analysis of variance and Tukey HSD test. RESULTS: Spontaneous myometrial contractility and responses to oxytocin showed species difference. Compared with that of control Wistar rats, spontaneous contractions of myometrium from nonpregnant epileptic WAG/Rij rats were significantly higher while being significantly lower in pregnant preparations. Upon stimulation with oxytocin, WAG/Rij myometrium showed significantly lower contractile response compared with preparations from healthy control Wistars (p < 0.01). Phenytoin and valproate caused concentration-dependent significant attenuation (p < 0.05) of spontaneous and oxytocin-induced contractions of myometrium from WAG/Rij and Wistar rats, both nonpregnant and pregnant. CONCLUSION: Myometrial smooth muscle from epileptic rats showed different spontaneous and oxytocin-induced contractility, and AEDs showed contractile modulatory actions, phenytoin being the most and levetiracetam the least effective. Although in vitro, our findings may be of clinical implications with regard to obstetric complications in epileptics and use of AEDs during pregnancy, and warrants further investigations.


Assuntos
Anticonvulsivantes , Miométrio , Ocitocina , Animais , Feminino , Gravidez , Ratos , Anticonvulsivantes/farmacologia , Antifibróticos , Relação Dose-Resposta a Droga , Levetiracetam/farmacologia , Miométrio/efeitos dos fármacos , Miométrio/fisiologia , Ocitocina/farmacologia , Fenitoína/farmacologia , Ratos Wistar , Contração Uterina , Ácido Valproico/farmacologia , Técnicas In Vitro
11.
PLoS One ; 16(8): e0256545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34464407

RESUMO

Inflammation is thought to play a pivotal role in the onset of term and some forms of preterm labour. Although, we recently found that myometrial inflammation is a consequence rather than a cause of term labour, there are several other reproductive tissues, including amnion, choriodecidua parietalis and decidua basalis, where the inflammatory stimulus to labour may occur. To investigate this, we have obtained amnion, choriodecidual parietalis and decidua basalis samples from women at various stages of pregnancy and spontaneous labour. The inflammatory cytokine profile in each tissue was determine by Bio-Plex Pro® cytokine multiplex assays and quantitative RT-PCR. Active motif assay was used to study transcription activation in the choriodecidua parietalis. Quantitative RT-PCR was use to study the pro-labour genes (PGHS-2, PGDH, OTR and CX43) in all of the tissues at the onset of labour and oxytocin (OT) mRNA expression in the choriodecidual parietalis and decidua basalis. Statistical significance was ascribed to a P value <0.05. In the amnion and choriodecidua parietalis, the mRNA levels of various cytokines decreased from preterm no labour to term no labour samples, but the protein levels were unchanged. The choriodecidua parietalis showed increase in the protein levels of IL-1ß and IL-6 in the term early labour samples. In the amnion and decidua basalis, the protein levels of several cytokines rose in term established labour. The multiples of the median derived from the 19-plex cytokine assay were greater in term early labour and term established labour samples from the choriodecidua parietalis, but only in term established labour for myometrium. These data suggest that the inflammatory stimulus to labour may begin in the choriodecidua parietalis, but the absence of any change in prolabour factor mRNA levels suggests that the cytokines may act on the myometrium where we observed changes in transcription factor activation and increases in prolabour gene expression in earlier studies.


Assuntos
Inflamação/fisiopatologia , Trabalho de Parto/fisiologia , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo , Decídua/metabolismo , Feminino , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Miométrio/fisiologia , Reação em Cadeia da Polimerase , Gravidez
12.
Pharmacol Res Perspect ; 9(4): e00818, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34223706

RESUMO

Progesterone (P4) and cyclic adenosine monophosphate (cAMP) are regarded as pro-quiescent factors that suppress uterine contractions during pregnancy. We previously used human primary cells in vitro and mice in vivo to demonstrate that simultaneously enhancing myometrial P4 and cAMP levels may reduce inflammation-associated preterm labor. Here, we assessed whether aminophylline (Ami; phosphodiesterase inhibitor) and P4 can reduce myometrial contractility and contraction-associated proteins (CAPs) better together than individually; both agents are clinically used drugs. Myometrial tissues from pregnant non-laboring women were treated ex vivo with Ami acutely (while spontaneous contracting) or throughout 24-h tissue culture (±P4); isometric tension measurements, PKA assays, and Western blotting were used to assess tissue contractility, cAMP action, and inflammation. Acute (1 h) treatment with 250 and 750 µM Ami reduced contractions by 50% and 84%, respectively, which was not associated with a directly proportional increase in whole tissue PKA activity. Sustained myometrial relaxation was observed during 24-h tissue culture with 750 µM Ami, which did not require P4 nor reduce CAPs. COX-2 protein can be reduced by 300 nM P4 but this did not equate to myometrial relaxation. Ami (250 µM) and P4 (100 and 300 nM) co-treatment did not prevent oxytocin-augmented contractions nor reduce CAPs during interleukin-1ß stimulation. Overall, Ami and P4 co-treatment did not suppress myometrial contractions more than either agent alone, which may be attributed to low specificity and efficacy of Ami; cAMP and P4 action at in utero neighboring reproductive tissues during pregnancy should also be considered.


Assuntos
Aminofilina/farmacologia , Miométrio/efeitos dos fármacos , Progesterona/farmacologia , Contração Uterina/efeitos dos fármacos , Conexina 43/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Interações Medicamentosas , Feminino , Proteínas de Choque Térmico HSP20/metabolismo , Humanos , Interleucina-1beta/farmacologia , Miométrio/fisiologia , Gravidez , Receptores de Progesterona/metabolismo
13.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298942

RESUMO

The electromagnetic field (EMF) affects the physiological processes in mammals, but the molecular background of the observed alterations remains not well established. In this study was tested the effect of short duration (2 h) of the EMF treatment (50 Hz, 8 mT) on global transcriptomic alterations in the myometrium of pigs during the peri-implantation period using next-generation sequencing. As a result, the EMF treatment affected the expression of 215 transcript active regions (TARs), and among them, the assigned gene protein-coding biotype possessed 90 ones (differentially expressed genes, DEGs), categorized mostly to gene ontology terms connected with defense and immune responses, and secretion and export. Evaluated DEGs enrich the KEGG TNF signaling pathway, and regulation of IFNA signaling and interferon-alpha/beta signaling REACTOME pathways. There were evaluated 12 differentially expressed long non-coding RNAs (DE-lnc-RNAs) and 182 predicted single nucleotide variants (SNVs) substitutions within RNA editing sites. In conclusion, the EMF treatment in the myometrium collected during the peri-implantation period affects the expression of genes involved in defense and immune responses. The study also gives new insight into the mechanisms of the EMF action in the regulation of the transcriptomic profile through lnc-RNAs and SNVs.


Assuntos
Implantação do Embrião/genética , Miométrio/fisiologia , Suínos/genética , Transcriptoma/genética , Animais , Campos Eletromagnéticos , Feminino , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Edição de RNA/genética , RNA Longo não Codificante/genética
14.
Sci Rep ; 11(1): 10420, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001934

RESUMO

This study aims to evaluate the feasibility and clinical interest of shear wave elastography, by quantitatively estimating the baseline stiffness of the myometrium before and after placental expulsion. We conducted a prospective cohort study of women at term, without known risk factors for postpartum hemorrhage, who gave birth via spontaneous labor in our tertiary center. Myometrium tonicity was evaluated based on measurements of shear wave speed (SWS) in the anterior uterine corpus. All data points were collected by a single operator. Measurements were carried out at three different time points: after fetal delivery (T1), after placental delivery (T2) and 30 min after placental delivery (T3). Our primary objective was to assess the feasibility of this new imaging technique. Ten valid SWS measurements obtained at each of the three different time points were considered as a positive primary outcome. Our secondary objectives were to evaluate the difference in median myometrial shear wave velocity between each time point, as well as to determine the correlation between myometrial shear wave velocity and patients' characteristics. 38 women were recruited during the study period, of whom 34 met the study criteria. 1017 SWS measurements were obtained. The median time to perform measurements was 16 s for one value, and 2 min 56 s for ten. For 11 women (32%) it was not possible to achieve ten SWS at T1 as placental expulsion immediately followed the birth of the newborn. One patient experienced placental retention and only measurements at T1 were performed. For all other patients, we were successfully able to obtain all measures as intended. There was no difference in the mean shear wave speed between the three time points. After adjustments for confounders, we observed a significant correlation for total blood loss (correlation coefficient = - 0.26, p < 0.001, units of oxytocin (correlation coefficient = - 0.34, p = 0.03), and newborn weight (correlation coefficient = - 0.08, p = 0.001). It is feasible to assess uterine tonicity by shear wave imaging, after placental expulsion. We did not observe a variance in uterine tonicity between the three time points. Women who had higher blood loss, received more units of oxytocin and/or those with newborns of a higher weight exhibited lower shear wave speed measures.


Assuntos
Parto Obstétrico , Técnicas de Imagem por Elasticidade , Miométrio/diagnóstico por imagem , Hemorragia Pós-Parto/epidemiologia , Adulto , Peso ao Nascer , Estudos de Viabilidade , Feminino , Humanos , Recém-Nascido , Miométrio/efeitos dos fármacos , Miométrio/fisiologia , Ocitocina/administração & dosagem , Hemorragia Pós-Parto/fisiopatologia , Hemorragia Pós-Parto/prevenção & controle , Estudos Prospectivos , Medição de Risco/métodos , Contração Uterina/efeitos dos fármacos , Contração Uterina/fisiologia , Monitorização Uterina , Adulto Jovem
15.
Mol Hum Reprod ; 27(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33823545

RESUMO

The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for foetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1, progesterone receptors, oestrogen receptors, and nuclear factor kappa B, as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour-associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.


Assuntos
Miométrio/fisiologia , Parto/genética , Fatores de Transcrição/fisiologia , Animais , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Trabalho de Parto/genética , Gravidez , Transcrição Gênica
16.
FASEB J ; 35(5): e21565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33864414

RESUMO

The uterus undergoes distinct molecular and functional changes during pregnancy and parturition. These processes are associated with the dramatic changes in various proteins. Given that the maturation and activation of many proteins require proteolytic processing by proprotein convertases (PCs), we sought to explore the role of PCs in uterine activation for labor. First, we found that furin was the most dramatically increased PC member in myometrial tissues from the pregnant women after onset of labor at term. Using the model of cultured human myometrial smooth muscle cells (HMSMCs), we showed that furin inhibitor CMK, D6R treatment and furin siRNA transfection suppressed contractility. Inhibition of furin activity or interfering furin expression decreased connexin 43 (CX43), prostaglandin (PG) endoperoxide synthase-2 (COX-2) and PGF2α receptor (FP) expression and NF-κB activation. In mouse model, administration of furin inhibitors prolonged gestational length. However, D6R treatment did not affect RU38486- and lipopolysaccharides (LPS)-induced preterm birth. Furthermore, D6R and furin siRNA treatment reduced the release of soluble form of tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK), while furin overexpression led to an increase in soluble TWEAK release in cultured HMSMCs. D6R treatment decreased TWEAK level in blood of pregnant mice. TWEAK treatment promoted contractility and NF-κB activation, while TWEAK receptor fibroblast growth factor-inducible 14 (FN14) antagonist treatment inhibited contractility and NF-κB activation in HMSMCs. In pregnant mice, administration of FN14 antagonist prolonged gestational length. Our data suggest that furin can act as a stimulator for uterine activation for labor at term. TWEAK is one of the potential substrates which mediate furin regulation of parturition initiation.


Assuntos
Modelos Animais de Doenças , Furina/metabolismo , Regulação da Expressão Gênica , Trabalho de Parto , Miócitos de Músculo Liso/fisiologia , Miométrio/fisiologia , Contração Uterina , Animais , Células Cultivadas , Feminino , Furina/genética , Humanos , Camundongos , Camundongos Endogâmicos ICR , Miócitos de Músculo Liso/citologia , Miométrio/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Gravidez , Nascimento Prematuro/fisiopatologia , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo
17.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671517

RESUMO

Recently, it has been suggested that progesterone affects the contractile activity of pregnant myometrium via nongenomic pathways; therefore, we aimed to clarify whether progesterone causes and/or inhibits pregnant myometrial contractions via nongenomic pathways. Our in vitro experiments using myometrial strips obtained from rats at 20 days of gestation revealed that progesterone caused myometrial contractions in a concentration- and time-dependent manner at concentrations up to 5 × 10-7 M; however, this effect decreased at concentrations higher than 5 × 10-5 M. Similarly, progesterone enhanced oxytocin-induced contractions up to 5 × 10-7 M and inhibited contractions at concentrations higher than 5 × 10-5 M. Conversely, progesterone did not enhance high-KCl-induced contractions but inhibited contractions in a concentration- and time-dependent manner at concentrations higher than 5 × 10-7 M. We also found that RU486 did not affect progesterone-induced contractions or the progesterone-induced inhibition of high-KCl-induced contractions; however, progesterone-induced contractions were blocked by calcium-free phosphate saline solution, verapamil, and nifedipine. In addition, FPL64176, an activator of L-type voltage-dependent calcium channels, enhanced high-KCl-induced contractions and rescued the decrease in high-KCl-induced contractions caused by progesterone. Together, these results suggest that progesterone exerts conflicting nongenomic effects on the contractions of pregnant myometrium via putative L-type voltage-dependent calcium channels.


Assuntos
Miométrio/fisiologia , Progesterona/fisiologia , Contração Uterina/fisiologia , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Feminino , Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Miométrio/efeitos dos fármacos , Nifedipino/farmacologia , Técnicas de Cultura de Órgãos , Ocitocina/farmacologia , Cloreto de Potássio/farmacologia , Gravidez , Progesterona/farmacologia , Pirróis/farmacologia , Ratos Wistar , Contração Uterina/efeitos dos fármacos , Verapamil/farmacologia
18.
Exp Biol Med (Maywood) ; 246(9): 1025-1035, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33554648

RESUMO

The myometrium is the smooth muscle layer of the uterus that generates the contractions that drive processes such as menstruation and childbirth. Aberrant contractions of the myometrium can result in preterm birth, insufficient progression of labor, or other difficulties that can lead to maternal or fetal complications or even death. To investigate the underlying mechanisms of these conditions, the most common model systems have conventionally been animal models and human tissue strips, which have limitations mostly related to relevance and scalability, respectively. Myometrial smooth muscle cells have also been isolated from patient biopsies and cultured in vitro as a more controlled experimental system. However, in vitro approaches have focused primarily on measuring the effects of biochemical stimuli and neglected biomechanical stimuli, despite the extensive evidence indicating that remodeling of tissue rigidity or excessive strain is associated with uterine disorders. In this review, we first describe the existing approaches for modeling human myometrium with animal models and human tissue strips and compare their advantages and disadvantages. Next, we introduce existing in vitro techniques and assays for assessing contractility and summarize their applications in elucidating the role of biochemical or biomechanical stimuli on human myometrium. Finally, we conclude by proposing the translation of "organ on chip" approaches to myometrial smooth muscle cells as new paradigms for establishing their fundamental mechanobiology and to serve as next-generation platforms for drug development.


Assuntos
Técnicas In Vitro , Modelos Biológicos , Miométrio/fisiologia , Animais , Fenômenos Biofísicos , Feminino , Humanos , Modelos Animais , Miócitos de Músculo Liso/fisiologia
19.
Reprod Sci ; 28(3): 838-856, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33090378

RESUMO

The bioelectrical signals that produce uterine contractions during parturition are not completely understood. The objectives are as follows: (1) to review the literature and information concerning uterine biopotential waveforms generated by the uterus, known to produce contractions, and evaluate mechanotransduction in pregnant patients using electromyographic (EMG) recording methods and (2) to study a new approach, uterine vector analysis, commonly used for the heart: vectorcardiography analysis. The patients used in this study were as follows: (1) patients at term not in labor (n = 3); (2) patients during the 1st stage of labor at cervical dilations from 2 to 10 cm (n = 30); and (3) patients in the 2nd stage of labor and during delivery (n = 3). We used DC-coupled electrodes and PowerLab hardware (model no. PL2604, ADInstruments, Castle Hill, Australia), with software (LabChart, ADInstruments) for storage and analysis of biopotentials. Uterine and abdominal EMG recordings were made from the surface of each patient using 3 electrode pairs with 1 pair (+ and -, with a 31-cm spacing distance) placed in the right/left position (X position) and with 1 pair placed in an up/down position (Y position, also 31 cm apart) and with the third pair at the front/back (Z position). Using signals from the three X, Y, and Z electrodes, slow (0.03 to 0.1 Hz, high amplitude) and fast wave (0.3 to 1 Hz, low amplitude) biopotentials were recorded. The amplitudes of the slow waves and fast waves were significantly higher during the 2nd stage of labor compared to the 1st stage (respectively, p = 9.54 × e-3 and p = 3.94 × e-7). When 2 channels were used, for example, the X vs. Y, for 2-D vector analysis or 3 channels, X vs. Y vs. Z, for 3-D analysis, are plotted against each other on their axes, this produces a vector electromyometriogram (EMMG) that shows no directionality for fast waves and a downward direction for slow waves. Similarly, during the 2nd stage of labor during abdominal contractions ("pushing"), the slow and fast waves were enlarged. Manual applied pressure was used to evoke bioelectrical activity to examine the mechanosensitivity of the uterus. Conclusions: (1) Phasic contractility of the uterus is a product of slow waves and groups of fast waves (bursts of spikes) to produce myometrial contractile responses. (2) 2-D and 3-D uterine vector analyses (uterine vector electromyometriogram) demonstrate no directionality of small fast waves while the larger slow waves represent the downward direction of biopotentials towards the cervical opening. (3) Myometrial cell action event excitability and subsequent contractility likely amplify slow wave activity input and uterine muscle contractility via mechanotransduction systems. (4) Models illustrate the possible relationships of slow to fast waves and the association of a mechanotransduction system and pacemaker activity as observed for slow waves and pacemakers in gastrointestinal muscle. (5) The interaction of these systems is thought to regulate uterine contractility. (6) This study suggests a potential indicator of delivery time. Such vector approaches might help us predict the progress of gestation and better estimate the timing of delivery, gestational pathologies reflected in bioelectric events, and perhaps the potential for premature delivery drug and mechanical interventions.


Assuntos
Trabalho de Parto/fisiologia , Mecanotransdução Celular , Miométrio/fisiologia , Parto/fisiologia , Contração Uterina , Animais , Relógios Biológicos , Eletromiografia , Feminino , Humanos , Trabalho de Parto/metabolismo , Potenciais da Membrana , Modelos Biológicos , Miométrio/metabolismo , Parto/metabolismo , Periodicidade , Gravidez , Fatores de Tempo
20.
Am J Perinatol ; 38(2): 126-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430820

RESUMO

OBJECTIVE: It is well established that women with a previous vaginal delivery have higher success rates in relation to vaginal birth after cesarean than those without. The aim of this study was to examine the effect of past mode of delivery on contractile parameters of human myometrium in vitro. STUDY DESIGN: Myometrial strips were excised from 64 women at cesarean delivery (CD) and recordings of spontaneous contractile activity analyzed and compared across three clinical groups: (1) women with no previous delivery (Group 1); (2) women with CD only (Group 2); and (3) women with a history of vaginal delivery and CD (Group 3). RESULTS: Myometrial samples from women in Group 3, women who had a previous vaginal delivery, had a significantly greater maximum amplitude of contractions (p < 0.05), a greater force (mean contractile force) of contractions (p < 0.01), and a faster rate of rise (p < 0.01) and relaxation of contractions (p < 0.05) than those in Groups 1 and 2. CONCLUSION: Many of the functional parameters of human uterine contractions are altered, or enhanced, in the women who have had a previous vaginal delivery, when compared with those without. This may partly explain the clinical differences observed in labor.


Assuntos
Miométrio/fisiologia , Paridade , Contração Uterina/fisiologia , Adulto , Cesárea , Feminino , Humanos , Gravidez , Terceiro Trimestre da Gravidez , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...